)-((CYBERUSLABS

www.cyberuslabs.com

TITLE: Integration with OpenID flow- developers guide

AUTHOR: Artur Wojnar <artur.wojnar@cyberuslabs.com>

CREATION DATE: 04.10.2019

REVIEWER: Aaron Neugebauer <aaron.neugebauer@cyberuslabs.com>
LAST REVIEW: 05.11.2019

Table of Contents

Requirements for integrating with Cyberus Key
General flow with the Widget
API documentation

Example integration
Client keys and transaction data
Integrating your users with Cyberus Key users
Creating a redirection
Embedding the Widget
Callback on the back channel
CSRF/XSRF mitigation
Claim: Nonce
Claim: at_hash
Claim: c_hash
Custom front channel implementation

O N NO 01 o0 » NN

e e ol
N P P O

Page 1 of 13

)-(CYBERUSLABS www.cyberuslabs.com

Requirements for integrating with Cyberus Key

This document focuses on integration with a web application, but for the other front channels
(e.g. desktop applications) it is possible to integrate with Cyberus Key Server.

1. Aclient account.
We will create an account for you and you’ll get two credential keys - client ID (public)
and client secret key. The last one should be protected and be known only to your
backend.

2. A front channel (web site) with the Cyberus Key Widget embedded or your own
implementation (see the Custom front channel implementation section).

3. A back channel (web server) with a defined endpoint that is triggered when an
Authentication Request ends, either with success or failure.

General flow with the Widget
Cyberus Key supports only OpenlD's most secure Code Flow. There are two communication

channels required for integration: front channel (your site's frontend to Cyberus Key Server) and
back channel (your site's backend to Cyberus Key Server).

Page 2 of 13

)-(CYBERUSLABS www.cyberuslabs.com

Flow with the Widget

Client Server Widget Mobile Cyberus Key Server

I
|
|
|
I .
| B o s | __ _binarysound 4
I [I |
| | Cpenld Authentication Request |
| | Long polling - waiting on the mobhile o
| [T |
: : : I Validation
| | | —
| | | |
| | Sound is played | |
I SRR I I
| < | |
{ : :_ OTP decoding from the sound :
|

| | - - - |
I | | |
| | | Finish an Openid Authentication Request |
I | | with the found OTP value o
| | | |
: : : I check oTP
I	
HTTP 302	
lg Location /callback?code=XYZ&state=x1234y	
wvalidation of claims I :	

| |

I

OpenlD Token Request :
sends client_secret o
| "
| walidation

|
|
|
1
ID Token, Access Token, Refresh Token

|

|

|

|

|

|

|

|

|

|

|

|

|

|
Redirect after login _ |
Lt |
|

|

—— g —————T—-—

The flow is a bit more complicated compared to a typical OpenlD one, because of the physical
layer - a sonic sound that is decoded by the mobile application. This entails some additional
work, which is fully automated by the Cyberus Key SDK and Cyberus Key API.

Internally, the Widget first calls the Cyberus Key Server to start a short-lived Cyberus Key
session. The server creates an OTP (One-Time Password), then generates a sound with the
encoded OTP and returns it to the Widget. The Widget is then able to start the OpenID

Page 3 of 13

)-(CYBERUSLABS www.cyberuslabs.com

Authentication Request, which will end when the mobile app decodes and sends the OTP to
the Server (or the session times out).

Side note: From the Token Request you will get ID Token and Access Token. The first one
provides information about the user and is part of OpenlID. The latter comes from OAuth 2
(which OpenlD is based on) and is used for authorization.

APl documentation

Our APl documentation supports OpenAPI| format, so you can view it using Swagger Editor or
other tools.

Requests and responses coming in and out of the Cyberus Key Server are validated according
to this specification. To ease your work, please feel free to auto-generate code based on the
API| documentation.

Cyberus Key API V2:
https://app.swaggerhub.com/apis-docs/Cyberuslabs/cyberus-key-api-v2/2.0.0

Client Admin AP (APIV1):
https://app.swaggerhub.com/apis-docs/CyberuslLabs/auth-server/0.1#/app

OpenlD: https://openid.net/specs/openid-connect-core-1_0.html#CodeFlowAuth

Page 4 of 13

https://app.swaggerhub.com/apis-docs/CyberusLabs/cyberus-key-api-v2/2.0.0
https://app.swaggerhub.com/apis-docs/CyberusLabs/auth-server/0.1
https://app.swaggerhub.com/apis/CyberusLabs/auth-server/0.1#/app
https://openid.net/specs/openid-connect-core-1_0.html#CodeFlowAuth

)-(CYBERUSLABS www.cyberuslabs.com

Example integration

Client keys and transaction data

We will supply you with a Client ID, Client secret and an admin account (with an email and
password).

We will also create transaction types based on your requirements. Transaction types define
how transactions will be handled in certain situations and are used when setting up
redirections (more on those below).
e Is biometric confirmation required?
For any transaction involving sensitive user information, we recommend requiring the
user to confirm with a biometric (currently their fingerprint).
e Should transactions fail on geolocation mismatch?
The widget and mobile application will independently detect the user’s location. If the
distance between the two is too large, the transaction will fail. This setting increases
security by ensuring the Widget and mobile application are near each other, but also
increases transaction failures due to inaccuracies in GPS and IP geolocalization.

You can list existing transaction types with the Client Admin API - please check the
documentation.

Integrating your users with Cyberus Key users

Syncing authenticated Cyberus Key users with one of your existing users can be done either
with the user’s email address or a custom ID. Because Cyberus Key users register through the
mobile application using their email (which requires a confirmation), the easiest option is to use
an email address.

e Email address
After a user has authenticated with Cyberus Key, your backend will get the user data
(including email) and you’ll be able to get the user based on their email.

e Custom Identifier
If you don’t want to or can’t rely on emails, then you can connect your users and
Cyberus Key users with your custom user identifier. This requires using Cyberus Key
Mobile SDK and Client Admin API.
The first gives you the possibility to adapt your mobile application to our functionalities.
The Mobile SDK allows you to create a user without an email but with a custom

Page 5 of 13

)-(CYBERUSLABS www.cyberuslabs.com

identifier.

The latter gives you a chance to register your users in Cyberus Key - the mobile
application needs an application token and hash token to get registered. You will get
these tokens after creating a user through the Cyberus Key Admin API.

How you will pass these tokens to the mobile application depends on what is the most
suitable for your requirements. Remember, that application token and especially hash
token should never be compromised - encrypt these values and delete them as soon as
the Mobile SDK is registered. Compromising them could cause a major security breach.

Creating a redirection

Part of the presented endpoints are still V1 and will be deprecated in the future.
In case of doubt ask us to create a redirection for you.

In the Cyberus Key documentation, you will find the description of the Client Admin API.
To use these API you need to confirm your identity:

curl 'https://production-api.cyberuskey.com/admin/auth' -H 'Cache-Control: no-cache' -H
'Content-Type: text/plain;charset=UTF-8' --data '{"'client_key":

"L8unKHwyfhzpG797tOCZKBJHbiBNSBjd","email":
"john.smith@company-inc.com","password": "AFu5ZHa}q)#k"}'

In the response you will get a token you can use to create a redirection:

curl 'https://production-api.cyberuskey.com/api/v2/redirections' -H 'Authorization: bearer
eyJ0eXAiOiJKV1QiLCIhbGciOJIUzI1NiJ9.eylleHAIOJE1INjgxM Tk INjlsImNsaWVudF9rZXkiOil
MOHVuS0h3eWZoenBHNzladEQDWktCSkhiaUJOUOJgZClsImVtYWiIsljoiYXJ0dXlud29gbmF

yQGNS5YMVyYdXNsYWIJzLmNvbSJ9.P1XJyrysVibOVmecwmWUF8SX9H_sPN2G84pNnj7iLAJs'
-H 'Content-Type: application/json' --data '{"uri":
"https://company-inc.org/biometric-callback", "transaction_type_id": 4}'

In the response you will get a Redirection resource.

Important note: Do NOT mix the same redirection (callback) with different transaction types. If
you plan to support these both, create separate redirections (URIs) (e.g. /not-safe-callback and
/biometric-callback). The Client Admin APl won't let you register the same URI for different
transaction types.

Page 6 of 13

)-(CYBERUSLABS www.cyberuslabs.com

Embedding the Widget

If for any reason you can’t use the Widget, see the Custom front channel implementation
section.

Using the Widget Javascript library (https://www.npmjs.com/package/cyberuskey-widget),
create a new CyberusKeyWidget instance with your public client ID and a redirect URI. Feel
free to adapt the widget to your needs, it’s pure HTML and CSS. The only requirement is to
keep the logo (on the left) and the text Login with Cyberus Key.

Login with CyberusKey

The whole OpenlD flow is based on full redirection - the Widget will replace the current URL
with Authentication Endpoint URL which then redirects to a final URL.

Callback on the back channel

The last requirement is to ensure that the redirection points a defined endpoint on your server.
Example below is written in Python and is only for demonstration purposes - don’t treat it as
production code.

class AuthorizationCallbackHandler(tornado.web.RequestHandler):
def get(self):
error = self.get_argument('error', None)
error_description = self.get_argument('error_description', None)

if error:

url=f'"/login_page&error={error}&error_description={error_description}
self.redirect(url)
return

data = {
'grant_type': 'authorization_code',
'‘code': self.get_argument('code’),

Page 7 of 13

https://www.npmjs.com/package/cyberuskey-widget

)-(CYBERUSLABS www.cyberuslabs.com

'redirect_uri": f'{options.host_url}demo/authorization-callback’
}
token=base64.b64encode(str.encode(f"{CLIENT_ID}:{CLIENT_SECRET}"))
headers = {

'Authorization': f'Basic {token.decode("utf-8")}'

}

url = f'{options.auth_server_url}/api/v2/tokens'
token_response = requests.post(url, data=data, headers=headers)
token_body = token_response.json()

id_token = token_body['id_token']
access_token = token_body['access_token']

encoded_payload = re.search('.+\.(.+)\..+', id_token).group(1)
decoded = base64.b64decode(f'{encoded_payload}==').decode('utf-8')
id_data = json.loads(decoded)

if id_data.get('iss') != CLIENT_DOMAIN or id_data.get('aud') != CLIENT_ID:
self.redirect(f'/login_page&error=Unauthorized')
return

session_id = self.get_cookie(options.cookie_name)
session = self._session_store.load_session(session_id)

session['user'] = {
'first_name': id_data.get('given_name'),
'last_name": id_data.get('family_name'),
'email’; id_data.get('email’),
'openid_identifier': id_data.get('sub'),
'exp': id_data.get('exp'),
'access_token': access_token
}
self._session_store.save_session(session)
self.redirect(f'/user-page')

e First, we check whether an error has been passed in. If so, we redirect to a page
displaying an error message.

e Next, we construct the Token Request according to the Cyberus Key API
documentation, including the Authorization Code that we got in a query parameter.
Remember to handle errors that can be thrown from Token Request (see Cyberus Key
docs).

Page 8 of 13

)-(CYBERUSLABS www.cyberuslabs.com

e After receiving a response from this request we decode the ID Token and Access Token
- both are in JWT format.
o The ID Token provides you with information about the authenticated user.
It is good practice to verify the at_hash claim.

m If you used values email and profile in OpenlD’s scope claim for
Authentication Request (configurable in the Widget) you will get the
following properties in your ID Token - email, given_name, family_name,
name, last_logged. The Widget by default requests these and for now
Cyberus Key does not restrict access to them.

m You will always get a unique OpenlD-related value of the user - in the
sub(ject) claim.

m If you defined a custom ID for a given user you will get the user_id
parameter.

o The Access Token is used to authorize the user in Cyberus Key Server and
access user-related resources.
e Next, we check the issuer and auditory claims.
e Lastly, after saving the user’s data to the user’s session we redirect to a user page.

You should validate the signature of JWT token (ID Token and ID Token) whether it has been
encoded by Cyberus Key Server's private RSA key. The public Cyberus Key key is:

BEGIN PUBLIC KEY
MIGeMA®GCSqGSIb3DQEBAQUAA4AGMADCBiAKBgHE1KnUERpCN/WcD6RtS9rKhJODM
Idr2Y1lyFrS255c0aG10CLwFPhSVK52z4HQvS5/VN3GB2Ft+fbu90ZRTqdA41HoOPB3

Kaj3yByDUdIoTHd4RmZMLSFVHKROKAW193nI7s/pzeqDLOoFpHNRNZGUghRbm2UK
fHHDWKKTn/iGIV7XAgMBAAE=
END PUBLIC KEY

CSRF/XSRF mitigation

You should always use a state claim. The state claim is bound to the Authentication Request
with its response. There're a few ways of doing this, but the easiest is to use a secure cookie
(which is the method specified in the OpenlID specs).

The code below (Python with Tornado) sets a new secure cookie (assuming we've set
cookie_secret while creating a server), which is done on the page request:

state = secrets.token_urlsafe(16)

Page 9 of 13

)-(CYBERUSLABS www.cyberuslabs.com

self.set_secure_cookie('state’, state, httponly=True)

It's also important to create the cookie as accessible only by HTTP so it is not possible to get it’s
value via JavaScript.

You will also need to pass the state value to the Widget:

const cyberusButton = new CyberusKeyWidget({
state: window.CyberusKey.STATE

Ik

The last thing is to compare the value in the Authentication Request’s response with the value
in the cookie:

state = self.get_argument('state', None)
original_state = self.get_secure_cookie('state').decode("utf-8")

if original_state != state:
self.nandleStateError()
return

Claim: Nonce

You should always use a nonce claim. The nonce claim is used to mitigate replay attacks.

On page request:

nonce = secrets.token_urlsafe(16)
self.set_secure_cookie('nonce', nonce, httponly=True)

Creating the Widget:

const cyberusButton = new CyberusKeyWidget({

nonce: window.CyberusKey.NONCE,

Page 10 of 13

)-(CYBERUSLABS www.cyberuslabs.com

ik

And the most important part - validating the nonce obtained from ID Token:

nonce = id_data.get('nonce’)
original_nonce = self.get_secure_cookie('nonce').decode("utf-8")

if original_nonce != nonce:
self.nandleNonceError()
return

Claim: at_hash

With this claim ID Token you can check the correctness of the Access Token. The Access Token
value is encoded with the SHA-256 algorithm, then the first 128 bits are taken and base64
encoded (respecting the URL encoding).

To validate this value:

original_at_hash = id_data.get('at_hash')

if original_at_hash:
hash_obj = hashlib.sha256|)
hash_obj.update(access_token.encode('utf-8'))
first128bits = hash_obj.digest()[0:16]

computed_at_hash = base64.urlsafe_b64encode(first128bits)

if original_at_hash != computed_at_hash.decode("utf-8"):
self.handleAtHashError()
return

Page 11 of 13

)-(CYBERUSLABS www.cyberuslabs.com

Claim: c_hash

This claim is also contained in the ID Token and it's computed the same way as at_hash, but the
value encoded is the Authorization Code.

Custom front channel implementation

If the Widget is not an option for you, you have to use Cyberus Key API
(https://www.npmjs.com/package/cyberuskey-sdk) directly.

The process includes:
e Starting short-lived Cyberus Key session
e Obtaining a sound based on the started session
e Preparing and making the Authentication Request

Page 12 of 13

https://www.npmjs.com/package/cyberuskey-sdk

)-(CYBERUSLABS www.cyberuslabs.com

Client Server

Request the page

Flow without Widget

Client Web AuthServer Mobile

Returns the page
and embeds the widget with client_id

—_——]

* verifies claims and the client
* finishes the session
* finishes confirmation request

JWT with client data

Redirection

Y

1 I I
| | |
| | |
[| |
o	
User clicks Log with Cyberus Key	
I T	
1 -	
! I (widget) POST /sessions I !	
‘	! params:client_id _! :
1 ! b session_id ! :	
L} 1	
))
	(widget) GET /sessions/(:id)
I	params: session_id
i !‘ chirp binary (OTP) ' :	
s 1	
	g y
	(widget) OpenID Authorize Request (long polling)
	params: session_id,scope,state response_type (code).redirect_uri
I I g I	
I I+ yalidate request I	
1' :	+ saves authorize data in session :
	.
Limmmmmmimmm mmim mmm i e m e mm Soundisplaved	e »!
1	: :
	g Confirmation with OTP (long polling)
[I [
Authorize Request's Response	
HTTP 302 Found	
ke Location: https://domain.org/ch?code=XYZ&state=foo	
™ I 1	
- ;	
* verifies claims | | I
P— . i i
| | |
OpenlD TokenRequest | |
params: code,client_id,client_secret < | |
I =] |
| |
| |
| |
|
|
|
|
|
|
|
|
|
1

Page 13 of 13

